Mean-field fluid behavior of the Gaussian core model
نویسندگان
چکیده
منابع مشابه
Mean-field fluid behavior of the gaussian core model
We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger [J. Chem. Phys. 65, 3968 (1976)], behaves as a weakly correlated "mean-field fluid" over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is accurately described by the random phase approximation for the direc...
متن کامل0 Fluid and solid phases of the Gaussian core model
We study the structural and thermodynamic properties of a model of point particles interacting by means of a Gaussian pair potential first introduced by Stillinger [Stillinger F H 1976 J. Chem. Phys. 65 3968]. By employing integral equation theories for the fluid state and comparing with Monte Carlo simulation results, we establish the limits of applicability of various common closures and exam...
متن کاملFluid and solid phases of the Gaussian core model
We study the structural and thermodynamic properties of a model of point particles interacting by means of a Gaussian pair potential first introduced by Stillinger (Stillinger F H 1976 J. Chem. Phys. 65 3968). By employing integral equation theories for the fluid state and comparing with Monte Carlo simulation results, we establish the limits of applicability of various common closures and exam...
متن کاملCore-halo distribution in the Hamiltonian mean-field model.
We study a paradigmatic system with long-range interactions: the Hamiltonian mean-field (HMF) model. It is shown that in the thermodynamic limit this model does not relax to the usual equilibrium Maxwell-Boltzmann distribution. Instead, the final stationary state has a peculiar core-halo structure. In the thermodynamic limit, HMF is neither ergodic nor mixing. Nevertheless, we find that using d...
متن کاملAnomalous mean-field behavior of the fully connected Ising model.
Although the fully connected Ising model does not have a length scale, we show that the critical exponents for thermodynamic quantities such as the mean magnetization and the susceptibility can be obtained using finite size scaling with the scaling variable equal to N, the number of spins. Surprisingly, the mean value and the most probable value of the magnetization are found to scale different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2000
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.62.7961